The unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients.
نویسندگان
چکیده
Eriophorum spp. are abundant perennial graminoids in the Arctic tundra and boreal peatlands. Because ecological studies indicated that some plants are unusually productive on infertile and cold sites, the anatomy of the overwintering corms of Eriophorum vaginatum (L.) and Eriophorum scheuchzeri (Hoppe) were examined to determine their involvement in nutrient uptake and storage. Components of the long-distance transport pathways were identified within the plants by using histochemical techniques and transport of apoplastic and symplastic dyes. E. scheuchzeri produced a rhizome that consisted mainly of storage parenchyma cells within which collateral vascular bundles were centrally located and arranged in a circle. By contrast, E. vaginatum developed a ring of horizontally arranged xylem and phloem, in addition to axial amphivasal vascular bundles leading to the leaves, all of which were bordered by transfer cells. As shown by the transport of fluorescein in the phloem and Safranine O in the xylem, each axial bundle and adventitious root contacted the horizontal ring of vascular tissues so that solutes from one vascular bundle were translocated into the vascular ring and circulated to another vascular bundle and/or to the roots. In addition, special groups of sclereids that functioned in both phloem and xylem transport were found at the base of the leaf traces and within junctions of senescing roots. These sclereids were named 'vascular sclerenchyma' and it was hypothesized that they provide a moving end for the vascular system because the corm dies progressively from the distal end as it grows upward from the apical meristem. It was concluded that this unusual vascular system of E. vaginatum is efficient in recycling nutrients internally, which may account for its competitive advantage in infertile and cold sites.
منابع مشابه
Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland.
Peatlands are important reservoirs of carbon (C) but our understanding of C cycling on cutover peatlands is limited. We investigated the decomposition over 18 months of five types of plant litter (Calluna vulgaris, Eriophorum angustifolium, Eriophorum vaginatum, Picea sitchensis and Sphagnum auriculatum) at a cutover peatland in Scotland, at three water tables. We measured changes in C, nitroge...
متن کاملEffects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use
We applied a (15)N dilution technique called "Integrated Total Nitrogen Input" (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increas...
متن کاملInter-Specific Competition, but Not Different Soil Microbial Communities, Affects N Chemical Forms Uptake by Competing Graminoids of Upland Grasslands
Evidence that plants differ in their ability to take up both organic (ON) and inorganic (IN) forms of nitrogen (N) has increased ecologists' interest on resource-based plant competition. However, whether plant uptake of IN and ON responds to differences in soil microbial community composition and/or functioning has not yet been explored, despite soil microbes playing a key role in N cycling. He...
متن کاملEcotypic differences in the phenology of the tundra species Eriophorum vaginatum reflect sites of origin
Eriophorum vaginatum is a tussock-forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is sh...
متن کاملVideographic Analysis of Eriophorum Vaginatum Spatial Coverage in an Ombotrophic Bog
The use of Remotely Piloted Aircraft Systems (RPAS) as well as newer automated unmanned aerial vehicles is becoming a standard method in remote sensing studies requiring high spatial resolution (<1 m) and very precise temporal data to capture phenological events. In this study we use a low cost rotorcraft to map Eriophorum vaginatum at Mer Bleue, an ombrotrophic bog located east of Ottawa, ON, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 55 397 شماره
صفحات -
تاریخ انتشار 2004